Gallium is essentially a soft silvery metal, and the elemental version of gallium is so brittle at low temperatures that if it’s held in the human hand long enough, the metal will melt. Today, nearly all gallium is used in electronics. Gallium arsenide, the primary chemical compound of gallium in electronics, is used in microwave circuits, high-speed switching circuits, and infrared circuits. Get some here. Continue reading for more.

5. Not Found in Nature

Elemental gallium is not found in nature, but it is easily obtained by smelting. Very pure gallium metal has a brilliant silvery color and its solid metal fractures conchoidally like glass. Gallium metal expands by 3.1% when it solidifies, and therefore storage in either glass or metal containers is avoided, due to the possibility of container rupture with freezing.

4. Attacks Other Metals

Gallium attacks most other metals by diffusing into their metal lattice. Gallium, for example, diffuses into the grain boundaries of aluminium-zinc alloys or steel, making them very brittle. Gallium easily alloys with many metals, and is used in small quantities as a plutonium-gallium alloy in the plutonium cores of nuclear bombs, to help stabilize the plutonium crystal structure.

3. Supercooling

The unique melting point of gallium allows it to melt in one’s hand, and then refreeze if removed. This metal has a strong tendency to supercool below its melting point/freezing point. Seeding with a crystal helps to initiate freezing. Gallium is one of the metals (with caesium, rubidium, mercury and likely francium) that are liquid at or near-normal room temperature, and can therefore be used in metal-in-glass high-temperature thermometers.

2. Does Not Crystallize

Gallium does not crystallize in any of the simple crystal structures. The stable phase under normal conditions is orthorhombic with 8 atoms in the conventional unit cell. Each atom has only one nearest neighbor (at a distance of 244 pm) and six other neighbors within additional 39 pm. Many stable and metastable phases are found as function of temperature and pressure.

1. Aluminum and Zinc

Gallium is a byproduct of the production of aluminium and zinc, whereas the sphalerite for zinc production is the minor source. Most gallium is extracted from the crude aluminium hydroxide solution of the Bayer process for producing alumina and aluminium. A mercury cell electrolysis and hydrolysis of the amalgam with sodium hydroxide leads to sodium gallate.

Author

A technology, gadget and video game enthusiast that loves covering the latest industry news. Favorite trade show? Mobile World Congress in Barcelona.